본문내용 바로가기

KYOBO 교보문고

sam X 갤럭시탭 s pen 한정판매
[보라]인싸작가님만나
2020다이어리
북모닝 12주년 이벤트
ebook전종 30%할인
  • 수요낭독공감 11월 행사
  • 제5회 교보손글쓰기대회 수상작 전시
  • 북모닝 책강
케라스 창시자에게 배우는 딥러닝(Deep Learning with Python)
* 중고장터 판매상품은 판매자가 직접 등록/판매하는 상품으로 판매자가 해당상품과 내용에 모든 책임을 집니다. 우측의 제품상태와 하단의 상품상세를 꼭 확인하신 후 구입해주시기 바랍니다.
476쪽 | | 181*232*38mm
ISBN-10 : 1160505977
ISBN-13 : 9791160505979
케라스 창시자에게 배우는 딥러닝(Deep Learning with Python) 중고
저자 프랑소와 숄레 | 역자 박해선 | 출판사 길벗
정가
33,000원 신간
판매가
26,390원 [20%↓, 6,610원 할인]
배송비
2,500원 (판매자 직접배송)
지금 주문하시면 2일 이내 출고 가능합니다.
토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다.
2018년 10월 22일 출간
제품상태
상태 최상 외형 최상 내형 최상
이 상품 최저가
22,000원 다른가격더보기
새 상품
29,700원 [10%↓, 3,300원 할인] 새상품 바로가기
수량추가 수량빼기
안내 :

중고장터에 등록된 판매 상품과 제품의 상태는 개별 오픈마켓 판매자들이 등록, 판매하는 것으로 중개 시스템만을 제공하는
인터넷 교보문고에서는 해당 상품과 내용에 대해 일체 책임을 지지 않습니다.

교보문고 결제시스템을 이용하지 않은 직거래로 인한 피해 발생시, 교보문고는 일체의 책임을 지지 않습니다.

중고책 추천 (판매자 다른 상품)

더보기

판매자 상품 소개

※ 해당 상품은 교보문고에서 제공하는 정보를 활용하여 안내하는 상품으로제품 상태를 반드시 확인하신 후 구입하여주시기 바랍니다.

판매자 배송 정책

  • 토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다.

더보기

구매후기 목록
NO 구매후기 구매만족도 ID 등록일
25 좋습니다 책상태도 좋아요 5점 만점에 5점 77ka*** 2019.11.12
24 감솨합니다^^ 고맙습니다~!! 5점 만점에 5점 cmw1*** 2019.11.09
23 `1234567890 5점 만점에 5점 p3*** 2019.11.08
22 잘 받았습니다. 책 상태 좋네요 5점 만점에 5점 rkd*** 2019.11.06
21 책상태 좋았고, 배송일도 2일내로 빨리 도착했습니다. 5점 만점에 5점 ahndr*** 2019.10.29

이 책의 시리즈

책 소개

상품구성 목록
상품구성 목록

단어 하나, 코드 한 줄 버릴 것이 없다!
창시자의 철학까지 담은 딥러닝 입문서 케라스 창시자이자 구글 딥러닝 연구원인 저자는 ‘인공 지능의 민주화’를 강조한다. 이 책 역시 많은 사람에게 딥러닝을 전달하는 또 다른 방법이며, 딥러닝 이면의 개념과 구현을 가능하면 쉽게 이해할 수 있게 하는 데 중점을 두었다. 1부에서는 딥러닝, 신경망, 머신 러닝의 기초를, 2부에서는 컴퓨터 비전, 텍스트, 시퀀스, 생성 모델을 위한 딥러닝 같은 실전 딥러닝을 설명한다. 이외에도 딥러닝을 언제 적용하는지, 한계는 무엇인지, 저자가 생각하는 딥러닝의 방향과 비전까지 엿볼 수 있다. 또한, 실제 사용하는 확장 가능한 다양한 예제를 수록했으며, 수학 장벽을 없애고자 수학적 표기 없이 직관적이고 간결한 코드로 개념을 설명한다. 딥러닝을 처음부터 배우거나 이해의 폭을 넓히고자 하는 분들에게 추천한다.

저자소개

저자 : 프랑소와 숄레
캘리포니아 마운틴 뷰의 구글에서 딥러닝과 관련된 일을 한다. 케라스 딥러닝 라이브러리의 창시자이고 텐서플로 머신 러닝 프레임워크의 기여자다. 컴퓨터 비전과 형식 추론을 위한 머신 러닝 애플리케이션에 초점을 맞춰 딥러닝을 연구한다. 그의 논문은 CVPR(Computer Vision and Pattern Recognition), NIPS(Neural Information Processing Systems), ICLR(International Conference on Learning Representations) 등의 주요 콘퍼런스와 워크숍에서 소개되었다.

역자 : 박해선
구글 ML GDE(Machine Learning Google Developer Expert). 기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 합니다. 텐서플로 블로그(tensorflow.blog)를 운영하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.
『핸즈온 머신러닝』, 『텐서플로 첫걸음』(이상 한빛미디어), 『케라스 창시자에게 배우는 딥러닝』(길벗)을 우리말로 옮겼습니다.

목차

1부 딥러닝의 기초
1장 딥러닝이란 무엇인가?

1.1 인공 지능과 머신 러닝, 딥러닝
1.1.1 인공 지능
1.1.2 머신 러닝
1.1.3 데이터에서 표현을 학습하기
1.1.4 딥러닝에서 ‘딥’이란 무엇일까?
1.1.5 그림 3개로 딥러닝의 작동 원리 이해하기
1.1.6 지금까지 딥러닝의 성과
1.1.7 단기간의 과대 선전을 믿지 말자
1.1.8 AI에 대한 전망
1.2 딥러닝 이전: 머신 러닝의 간략한 역사
1.2.1 확률적 모델링
1.2.2 초창기 신경망
1.2.3 커널 방법
1.2.4 결정 트리, 랜덤 포레스트, 그래디언트 부스팅 머신
1.2.5 다시 신경망으로
1.2.6 딥러닝의 특징
1.2.7 머신 러닝의 최근 동향
1.3 왜 딥러닝일까? 왜 지금일까?
1.3.1 하드웨어
1.3.2 데이터
1.3.3 알고리즘
1.3.4 새로운 투자의 바람
1.3.5 딥러닝의 대중화
1.3.6 지속될까?

2장 시작하기 전에: 신경망의 수학적 구성 요소
2.1 신경망과의 첫 만남
2.2 신경망을 위한 데이터 표현
2.2.1 스칼라(0D 텐서)
2.2.2 벡터(1D 텐서)
2.2.3 행렬(2D 텐서)
2.2.4 3D 텐서와 고차원 텐서
2.2.5 핵심 속성
2.2.6 넘파이로 텐서 조작하기
2.2.7 배치 데이터
2.2.8 텐서의 실제 사례
2.2.9 벡터 데이터
2.2.10 시계열 데이터 또는 시퀀스 데이터
2.2.11 이미지 데이터
2.2.12 비디오 데이터
2.3 신경망의 톱니바퀴: 텐서 연산
2.3.1 원소별 연산
2.3.2 브로드캐스팅
2.3.3 텐서 점곱
2.3.4 텐서 크기 변환
2.3.5 텐서 연산의 기하학적 해석
2.3.6 딥러닝의 기하학적 해석
2.4 신경망의 엔진: 그래디언트 기반 최적화
2.4.1 변화율이란?
2.4.2 텐서 연산의 변화율: 그래디언트
2.4.3 확률적 경사 하강법
2.4.4 변화율 연결: 역전파 알고리즘
2.5 첫 번째 예제 다시 살펴보기
2.6 요약

3장 신경망 시작하기
3.1 신경망의 구조
3.1.1 층: 딥러닝의 구성 단위
3.1.2 모델: 층의 네트워크
3.1.3 손실 함수와 옵티마이저: 학습 과정을 조절하는 열쇠
3.2 케라스 소개
3.2.1 케라스, 텐서플로, 씨아노, CNTK
3.2.2 케라스를 사용한 개발: 빠르게 둘러보기
3.3 딥러닝 컴퓨터 셋팅
3.3.1 주피터 노트북: 딥러닝 실험을 위한 최적의 방법
3.3.2 케라스 시작하기: 두 가지 방법
3.3.3 클라우드에서 딥러닝 작업을 수행했을 때 장단점
3.3.4 어떤 GPU 카드가 딥러닝에 최적일까?
3.4 영화 리뷰 분류: 이진 분류 예제
3.4.1 IMDB 데이터셋
3.4.2 데이터 준비
3.4.3 신경망 모델 만들기
3.4.4 훈련 검증
3.4.5 훈련된 모델로 새로운 데이터에 대해 예측하기
3.4.6 추가 실험
3.4.7 정리
3.5 뉴스 기사 분류: 다중 분류 문제
3.5.1 로이터 데이터셋
3.5.2 데이터 준비
3.5.3 모델 구성
3.5.4 훈련 검증
3.5.5 새로운 데이터에 대해 예측하기
3.5.6 레이블과 손실을 다루는 다른 방법
3.5.7 충분히 큰 중간층을 두어야 하는 이유
3.5.8 추가 실험
3.5.9 정리
3.6 주택 가격 예측: 회귀 문제
3.6.1 보스턴 주택 가격 데이터셋
3.6.2 데이터 준비
3.6.3 모델 구성
3.6.4 K-겹 검증을 사용한 훈련 검증
3.6.5 정리
3.7 요약

4장 머신 러닝의 기본 요소
4.1 머신 러닝의 네 가지 분류
4.1.1 지도 학습
4.1.2 비지도 학습
4.1.3 자기 지도 학습
4.1.4 강화 학습
4.2 머신 러닝 모델 평가
4.2.1 훈련, 검증, 테스트 세트
4.2.2 기억해야 할 것
4.3 데이터 전처리, 특성 공학, 특성 학습
4.3.1 신경망을 위한 데이터 전처리
4.3.2 특성 공학
4.4 과대적합과 과소적합
4.4.1 네트워크 크기 축소
4.4.2 가중치 규제 추가
4.4.3 드롭아웃 추가
4.5 보편적인 머신 러닝 작업 흐름
4.5.1 문제 정의와 데이터셋 수집
4.5.2 성공 지표 선택
4.5.3 평가 방법 선택
4.5.4 데이터 준비
4.5.5 기본보다 나은 모델 훈련하기
4.5.6 몸집 키우기: 과대적합 모델 구축
4.5.7 모델 규제와 하이퍼파라미터 튜닝
4.6 요약

2부 실전 딥러닝
5장 컴퓨터 비전을 위한 딥러닝

5.1 합성곱 신경망 소개
5.1.1 합성곱 연산
5.1.2 최대 풀링 연산
5.2 소규모 데이터셋에서 밑바닥부터 컨브넷 훈련하기
5.2.1 작은 데이터셋 문제에서 딥러닝의 타당성
5.2.2 데이터 내려받기
5.2.3 네트워크 구성하기
5.2.4 데이터 전처리
5.2.5 데이터 증식 사용하기
5.3 사전 훈련된 컨브넷 사용하기
5.3.1 특성 추출
5.3.2 미세 조정
5.3.3 정리
5.4 컨브넷 학습 시각화
5.4.1 중간층의 활성화 시각화하기
5.4.2 컨브넷 필터 시각화하기
5.4.3 클래스 활성화의 히트맵 시각화하기
5.5 요약

6장 텍스트와 시퀀스를 위한 딥러닝
6.1 텍스트 데이터 다루기
6.1.1 단어와 문자의 원-핫 인코딩
6.1.2 단어 임베딩 사용하기
6.1.3 모든 내용을 적용하기: 원본 텍스트에서 단어 임베딩까지
6.1.4 정리
6.2 순환 신경망 이해하기
6.2.1 케라스의 순환 층
6.2.2 LSTM과 GRU 층 이해하기
6.2.3 케라스를 사용한 LSTM 예제
6.2.4 정리
6.3 순환 신경망의 고급 사용법
6.3.1 기온 예측 문제
6.3.2 데이터 준비
6.3.3 상식 수준의 기준점
6.3.4 기본적인 머신 러닝 방법
6.3.5 첫 번째 순환 신경망
6.3.6 과대적합을 감소하기 위해 순환 드롭아웃 사용하기
6.3.7 스태킹 순환 층
6.3.8 양방향 RNN 사용하기
6.3.9 더 나아가서
6.3.10 정리
6.4 컨브넷을 사용한 시퀀스 처리
6.4.1 시퀀스 데이터를 위한 1D 합성곱 이해하기
6.4.2 시퀀스 데이터를 위한 1D 풀링
6.4.3 1D 컨브넷 구현
6.4.4 CNN과 RNN을 연결하여 긴 시퀀스를 처리하기
6.4.5 정리
6.5 요약

7장 딥러닝을 위한 고급 도구
7.1 Sequential 모델을 넘어서: 케라스의 함수형 API
7.1.1 함수형 API 소개
7.1.2 다중 입력 모델
7.1.3 다중 출력 모델
7.1.4 층으로 구성된 비순환 유향 그래프
7.1.5 층 가중치 공유
7.1.6 층과 모델
7.1.7 정리
7.2 케라스 콜백과 텐서보드를 사용한 딥러닝 모델 검사와 모니터링
7.2.1 콜백을 사용하여 모델의 훈련 과정 제어하기
7.2.2 텐서보드 소개: 텐서플로의 시각화 프레임워크
7.2.3 정리
7.3 모델의 성능을 최대로 끌어올리기
7.3.1 고급 구조 패턴
7.3.2 하이퍼파라미터 최적화
7.3.3 모델 앙상블
7.3.4 정리
7.4 요약

8장 생성 모델을 위한 딥러닝
8.1 LSTM으로 텍스트 생성하기
8.1.1 생성 RNN의 간단한 역사
8.1.2 시퀀스 데이터를 어떻게 생성할까?
8.1.3 샘플링 전략의 중요성
8.1.4 글자 수준의 LSTM 텍스트 생성 모델 구현
8.1.5 정리
8.2 딥드림
8.2.1 케라스 딥드림 구현
8.2.2 정리
8.3 뉴럴 스타일 트랜스퍼
8.3.1 콘텐츠 손실
8.3.2 스타일 손실
8.3.3 케라스에서 뉴럴 스타일 트랜스퍼 구현하기
8.3.4 정리
8.4 변이형 오토인코더를 사용한 이미지 생성
8.4.1 이미지의 잠재 공간에서 샘플링하기
8.4.2 이미지 변형을 위한 개념 벡터
8.4.3 변이형 오토인코더
8.4.4 정리
8.5 적대적 생성 신경망 소개
8.5.1 GAN 구현 방법
8.5.2 훈련 방법
8.5.3 생성자
8.5.4 판별자
8.5.5 적대적 네트워크
8.5.6 DCGAN 훈련 방법
8.5.7 정리
8.6 요약

9장 결론
9.1 핵심 개념 리뷰
9.1.1 AI를 위한 여러 방법
9.1.2 머신 러닝 분야에서 딥러닝이 특별한 이유
9.1.3 딥러닝에 대하여
9.1.4 핵심 기술
9.1.5 일반적인 머신 러닝 작업 흐름
9.1.6 주요 네트워크 구조
9.1.7 딥러닝의 가능성
9.2 딥러닝의 한계
9.2.1 머신 러닝 모델의 의인화 위험
9.2.2 지역 일반화 vs. 궁극 일반화
9.2.3 정리
9.3 딥러닝의 미래
9.3.1 프로그램 같은 모델
9.3.2 역전파와 미분 가능 층을 넘어서
9.3.3 자동화된 머신 러닝
9.3.4 영구 학습과 모듈화된 서브루틴 재사용
9.3.5 장기 비전
9.4 빠른 변화에 뒤처지지 않기
9.4.1 캐글의 실전 문제로 연습하기
9.4.2 아카이브(arXiv)를 통해 최신 논문 읽기
9.4.3 케라스 생태계 탐험하기
9.5 맺음말

부록 A 윈도에 텐서플로와 케라스 설치하기
A.1 아나콘다 설치하기
A.2 텐서플로, 케라스 설치하기
A.3 예제 노트북 실행하기

부록 B 우분투 리눅스에 케라스와 필수 라이브러리 설치하기
B.1 파이썬 과학 라이브러리 설치하기
B.2 GPU 설정하기
B.3 씨아노 설치하기(선택 사항)
B.4 케라스 설치하기
B.5 아나콘다 환경 파일을 사용하여 설치하기

부록 C EC2 GPU 인스턴스에서 주피터 노트북 실행하기
C.1 주피터 노트북은 무엇일까? 왜 주피터 노트북을 AWS GPU에서 실행할까?
C.2 딥러닝 주피터 노트북을 위해 AWS를 사용하지 않는 이유는 무엇일까?
C.3 AWS GPU 인스턴스 설정하기
C.4 주피터 설정하기
C.5 케라스 설치하기
C.6 로컬 포트포워딩 설정하기
C.7 로컬 브라우저에서 주피터 사용하기
C.8 코랩을 사용하여 주피터 노트북 실행하기

책 속으로

이 책은 딥러닝을 처음부터 배우거나 이해의 폭을 넓히고자 하는 모든 사람을 위해 썼습니다. 머신 러닝 기술자나 소프트웨어 엔지니어, 대학생에 상관없이 이 책에서 배울 점이 있을 것입니다. 이 책은 딥러닝을 직접 체험해 볼 수 있도록 안내합니다. 수학...

[책 속으로 더 보기]

이 책은 딥러닝을 처음부터 배우거나 이해의 폭을 넓히고자 하는 모든 사람을 위해 썼습니다. 머신 러닝 기술자나 소프트웨어 엔지니어, 대학생에 상관없이 이 책에서 배울 점이 있을 것입니다.
이 책은 딥러닝을 직접 체험해 볼 수 있도록 안내합니다. 수학 표기 대신 프로그래밍 코드로 개념을 설명하고 머신 러닝과 딥러닝의 핵심 개념에 대한 실용적인 직관을 제공합니다.
자세한 주석과 실용적인 가이드라인이 포함된 30개가 넘는 예제가 있습니다. 구체적인 문제를 풀기 위해 딥러닝을 시작할 때 알아야 할 모든 것에 대한 간단명료한 수준 높은 설명도 함께합니다.
예제 코드는 파이썬 딥러닝 프레임워크 케라스와 백엔드 엔진으로 텐서플로를 사용합니다. 케라스는 가장 인기 있고 빠르게 성장하는 딥러닝 프레임워크로 딥러닝을 시작하기 가장 좋은 도구입니다.
이 책을 읽고 나면 딥러닝이 무엇인지, 언제 적용하는지, 한계는 무엇인지에 대한 개념을 확실히 이해할 수 있습니다. 머신 러닝 문제를 구성하고 해결하기 위한 표준적인 작업 흐름에 익숙해지고 자주 마주치는 이슈들을 다루는 방법을 배웁니다. 따라서 케라스를 사용하여 컴퓨터 비전에서 자연어 처리까지 이미지 분류, 시계열 예측, 감성 분석, 이미지와 텍스트 생성 같은 실전 문제를 다룰 수 있을 것입니다.

- <지은이의 말> 중에서

[책 속으로 더 보기 닫기]

출판사 서평

단어 하나, 코드 한 줄 버릴 것이 없다! 파이썬과 케라스로 배우는 딥러닝 핵심 원리! 쉽고 간결하다! 케라스 창시자이자 구글 AI 연구원인 저자는 ‘인공 지능의 민주화’를 강조한다. 이런 개념을 바탕으로 케라스를 만들었으며, 현재 딥러닝을 ...

[출판사서평 더 보기]

단어 하나, 코드 한 줄 버릴 것이 없다!
파이썬과 케라스로 배우는 딥러닝 핵심 원리!

쉽고 간결하다!
케라스 창시자이자 구글 AI 연구원인 저자는 ‘인공 지능의 민주화’를 강조한다. 이런 개념을 바탕으로 케라스를 만들었으며, 현재 딥러닝을 시작하기에 가장 쉬운 라이브러리로 평가받고 있다. 이 책 역시 ‘인공 지능의 민주화’를 위한 일환이다. 딥러닝 기초부터 설명하기 때문에 파이썬만 알고 있다면 딥러닝 기초 지식이 없어도 학습을 시작할 수 있다. 또한, 수학적 표기법이 학습에 큰 장벽이 된다고 생각해 수학적 표기 없이 직관적이고 간결한 코드로 개념을 설명한다. 코드만으로도 수학 개념을 쉽게 파악할 수 있다.

명확한 학습법을 제시한다!
딥러닝은 이미지 분류, 예측, 음성 인식, 텍스트 분석 등 많은 분야에 활용할 수 있다. 처음부터 이 모든 것을 다 학습할 수는 없다. 오랜 기간 딥러닝 개발자로 활동해온 저자가 딥러닝을 제대로 학습하기 위해 어디서부터 시작해야 하고, 어떻게 학습해야 할지를 고민해 구성했다. 1부에서는 딥러닝, 신경망, 머신 러닝의 기초를, 2부에서는 컴퓨터 비전, 텍스트, 시퀀스, 생성 모델을 위한 딥러닝을 모범 사례와 함께 학습한다.

실용적이고 확장 가능한 예제로 학습한다!
상세한 해설, 실질적인 권장 사항, 구체적인 문제 해결을 위한 팁까지 딥러닝 학습을 시작하기 위해 알아야 할 모든 것을 포괄하는 설명이 포함된 예제로 학습한다. 이 예제들을 학습하면서 딥러닝의 개념, 적용 범위, 한계 등을 확실하게 이해할 수 있다. 이 과정으로 머신 러닝 문제를 해결하는 작업 흐름에 익숙해질 것이며, 케라스를 사용해 컴퓨터 비전, 자연어 처리까지 실전 문제를 해결할 수 있다. 또한, 이 예제들을 확장해 나만의 딥러닝 모델을 만들거나 적용할 수도 있다.

[출판사서평 더 보기 닫기]

책 속 한 문장

회원리뷰

  • 구입후기 | he**oya | 2019.10.07 | 5점 만점에 5점 | 추천:0
    디자인도 멋지고 책 내용도 매우 알찹니다. 학교교재라 구입했는데  논문 쓸때도 도움이 많이 될 것 같고 끝까지 읽어...

    디자인도 멋지고 책 내용도 매우 알찹니다.

    학교교재라 구입했는데  논문 쓸때도 도움이 많이 될 것 같고 끝까지 읽어보진 못했지만 기대하며 보고 있는 책입니다.

    적극 추천합니다.

    많은 분들이 일고 실제적으로 도움을 많이 받았으면 합니다.

    이 가을에 전공서적 뿐 아니라 마음의 양식을 많이 쌓고 싶은데 주경야독하는 직장인이라 마음처럼 쉽지가 않네요....

    그러나 더 밝은 미래를 기대하며 잠시 잠깐 하고 싶은 것을 순서를 바꾼다는 생각으로 바구니 한결 마음이 편해지고 행복합니다

    부디 이 가을엔 지식도 많이  그 지식이 꼭 쓰여질  그 날을 기대하며 보름달처럼 풍성한 그런 마음으로 지냈으면 합니다.

    공부에 지쳐서 주저리주저리 너스레를 떨었네요

    세상은 넓고 할 일은 많다지만 일하기 전에 생각의 정리가 더 필요해보이네요

     

     

교환/반품안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품안내
반품/교환방법

[판매자 페이지>취소/반품관리>반품요청] 접수
또는 [1:1상담>반품/교환/환불], 고객센터 (1544-1900)

※ 중고도서의 경우 재고가 한정되어 있으므로 교환이 불가할 수 있으며, 해당 상품의 경우 상품에 대한 책임은 판매자에게 있으며 교환/반품 접수 전에 반드시 판매자와 사전 협의를 하여주시기 바랍니다.

반품/교환가능 기간

변심반품의 경우 수령 후 7일 이내, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

※ 중고도서의 경우 판매자와 사전의 협의하여주신 후 교환/반품 접수가 가능합니다.

반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유

소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우(단지 확인을 위한 포장 훼손은 제외)

소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 예) 화장품, 식품, 가전제품 등

복제가 가능한 상품 등의 포장을 훼손한 경우 예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)

디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우

시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품이므로 단순 변심 및 착오로 인한 취소/교환/반품 시 해외주문 반품/취소 수수료 고객 부담 (해외주문 반품/취소 수수료는 판매정가의 20%를 적용

2) 중고도서 : 반품/교환접수없이 반송하거나 우편으로 접수되어 상품 확인이 어려운 경우

소비자 피해보상
환불지연에 따른 배상

- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

- 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

판매자
책책북북
판매등급
특급셀러
판매자구분
일반
구매만족도
5점 만점에 5점
평균 출고일 안내
2일 이내
품절 통보율 안내
23%

바로가기

최근 본 상품