본문내용 바로가기

KYOBO 교보문고

sam X 갤럭시탭 s pen 한정판매
[보라]인싸작가님만나
2020다이어리
북모닝 12주년 이벤트
  • 수요낭독공감 11월 행사
  • 제5회 교보손글쓰기대회 수상작 전시
컴퓨터 비전과 딥러닝
* 중고장터 판매상품은 판매자가 직접 등록/판매하는 상품으로 판매자가 해당상품과 내용에 모든 책임을 집니다. 우측의 제품상태와 하단의 상품상세를 꼭 확인하신 후 구입해주시기 바랍니다.
344쪽 | | 190*236*19mm
ISBN-10 : 1161752005
ISBN-13 : 9791161752006
컴퓨터 비전과 딥러닝 중고
저자 라쟈링가파 샨무갸마니 | 역자 테크 트랜스 그룹 T4 | 출판사 에이콘출판
정가
30,000원 신간
판매가
23,990원 [20%↓, 6,010원 할인]
배송비
2,500원 (판매자 직접배송)
지금 주문하시면 2일 이내 출고 가능합니다.
토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다.
2018년 8월 31일 출간
제품상태
상태 최상 외형 최상 내형 최상
이 상품 최저가
23,990원 다른가격더보기
새 상품
27,000원 [10%↓, 3,000원 할인] 새상품 바로가기
수량추가 수량빼기
안내 :

중고장터에 등록된 판매 상품과 제품의 상태는 개별 오픈마켓 판매자들이 등록, 판매하는 것으로 중개 시스템만을 제공하는
인터넷 교보문고에서는 해당 상품과 내용에 대해 일체 책임을 지지 않습니다.

교보문고 결제시스템을 이용하지 않은 직거래로 인한 피해 발생시, 교보문고는 일체의 책임을 지지 않습니다.

중고책 추천 (판매자 다른 상품)

더보기

판매자 상품 소개

※ 해당 상품은 교보문고에서 제공하는 정보를 활용하여 안내하는 상품으로제품 상태를 반드시 확인하신 후 구입하여주시기 바랍니다.

판매자 배송 정책

  • 토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다.

더보기

구매후기 목록
NO 구매후기 구매만족도 ID 등록일
25 좋습니다 책상태도 좋아요 5점 만점에 5점 77ka*** 2019.11.12
24 감솨합니다^^ 고맙습니다~!! 5점 만점에 5점 cmw1*** 2019.11.09
23 `1234567890 5점 만점에 5점 p3*** 2019.11.08
22 잘 받았습니다. 책 상태 좋네요 5점 만점에 5점 rkd*** 2019.11.06
21 책상태 좋았고, 배송일도 2일내로 빨리 도착했습니다. 5점 만점에 5점 ahndr*** 2019.10.29

이 책의 시리즈

책 소개

상품구성 목록
상품구성 목록

딥러닝은 인공 지능에 혁명을 일으키고 있으며 앞으로 수십 년 동안 강렬하게 세상을 바꿀 기술이다. 심층 학습을 기반으로 한 인공 지능은 산업혁명과 비슷한 수준의 영향을 미칠 수 있다.
딥러닝은 현실상에서는 산업 혁명과 기계와 마찬가지로 산업 생산성을 향상시키고 많은 인류의 생활 수준을 높여줄 것이다.
컴퓨터 비전을 위해 활용될 수 있는 딥러닝에 대한 기본 지식들을 파악하게 되고, 딥러닝의 강력한 힘과 많은 애플리케이션을 지원하기 위한 내용에 대해서 알게 될 것이다.

저자소개

저자 : 라쟈링가파 샨무갸마니
현재 SAP 싱가포르에서 딥러닝 분야의 리더로 일하고 있다. 이전에는 컴퓨터 비전 제품 개발을 위해 여러 신생 기업에서 근무하고 컨설팅해왔다.
인도 공과 대학(Indian Institute of Technology, Madras)에서 석사 학위를 받았으며, 제조 분야의 컴퓨터 비전 애플리케이션 산업에 관한 논문을 저술했다.
저널 및 콘퍼런스에서 동료 논문 검토를 했으며, 머신 러닝 분야에서 몇몇 특허를 보유했다. 여가에는 프로그래밍과 머신 러닝을 학생과 엔지니어에게 가르친다.

역자 : 테크 트랜스 그룹 T4
최신 IT 테크놀로지에 대한 리서치를 목적으로 하는 스터디 그룹이다. 엔터프라이즈 환경에서 오픈소스를 활용해 프레임워크를 구축하는 데 관심이 많으며, 스프링(Spring), React.js, Node.js, OpenCV, ML 등의 기술에 주목하고 있다.
오픈소스 기반의 플랫폼 개발 및 활용도 주요 관심 분야다. 에이콘출판사에서 펴낸 『OpenCV를 위한 머신 러닝』(2017), 『추천 엔진을 구축하기 위한 기본서』(2017) 등을 번역했다.

목차

1장. 시작하기
딥러닝 이해하기
퍼셉트론
활성화 함수
인공 신경망
원-핫 인코딩
신경망 학습
텐서플로 플레이그라운드 살펴보기
컨볼루션 신경망
순환 신경망
LSTM
컴퓨터 비전을 위한 딥러닝
분류
검출 또는 로컬라이제이션 및 분할
유사도 학습
이미지 캡셔닝
생성 모델
동영상 분석
개발 환경 설정하기
하드웨어 및 운영체제
소프트웨어 패키지 설치하기
요약

2장. 이미지 분류
텐서플로에서 MNIST 모델 훈련하기
MNIST 데이터셋
MNIST 데이터 로드하기
퍼셉트론 구축하기
다중 레이어 컨볼루션 신경망 구축하기
케라스에서 MNIST 모델 훈련시키기
데이터셋 준비하기
모델 구축하기
그 외 일반적으로 사용되는 이미지 테스트 데이터셋
CIFAR 데이터셋
패션-MNIST 데이터셋
ImageNet 데이터셋 및 대회
더 깊은 딥러닝 모델
AlexNet 모델
VGG-16 모델
구글 인셉션-V3 모델
마이크로소프트 ResNet-50 모델
SqueezeNet 모델
공간 변환 네트워크
DenseNet 모델
개와 고양이를 예측하는 모델 훈련시키기
데이터 준비하기
간단한 CNN으로 벤치마킹하기
데이터셋 확장하기
모델의 전이 학습 또는 미세 조정
딥러닝의 여러 레이어 파인 튜닝하기
실제 애플리케이션 개발하기
올바른 모델 선택하기
언더피팅 및 오버피팅 시나리오 해결하기
얼굴에서 성별과 나이 검출하기
의류 모델 미세 조정하기
브랜드 안정성
요약

3장. 이미지 검색
시각적 특징의 이해
딥러닝 모델 활성화의 시각화
임베딩 시각화
DeepDream
적대적인 사례
모델 추론
모델 내보내기
훈련된 모델 사용
콘텐츠 기반 이미지 검색
검색 파이프라인 구축
효율적 검색
ANNOY를 사용한 매칭 가속화
Raw 이미지 자동 인코더
자동 인코더를 사용한 노이즈 제거
요약

4장. 객체 검출
이미지에서의 객체 검출
데이터셋 탐색하기
ImageNet 데이터셋
파스칼 VOC 챌린지
COCO 객체 검출 챌린지
측정 항목을 사용해 데이터 집합 평가하기
알고리즘 로컬라이제이션하기
슬라이딩 윈도우를 사용해 객체 로컬라이제이션하기
로컬라이제이션을 회귀 문제로 생각해보기
객체 검출
R-CNN
Fast R-CNN
Faster R-CNN
싱글 샷 다중 박스 검출기
객체 검출 API
설치 및 설정
사전 훈련된 모델
객체 검출 모델 재훈련
자율주행용 보행자 검출 훈련
YOLO 객체 검출 알고리즘
요약

5장. 시맨틱 분할
픽셀 예측
의료 이미지 진단
위성 이미지를 사용해 지구를 살펴보기
로봇이 볼 수 있도록 허용하기
데이터셋
시맨틱 분할을 위한 알고리즘
완전 컨볼루션 네트워크
SegNet 아키텍처
확장 컨볼루션
DeepLab
RefiNet
PSPnet
대형 커널의 문제
DeepLab v3
울트라-신경 분할
위성 이미지 분할
분할을 위한 FCN 모델링
인스턴스 분할
요약

6장. 유사도 학습
유사도 학습을 위한 알고리즘
샴 네트워크
FaceNet
DeepNet 모델
DeepRank
시각적 추천 시스템
인간 얼굴 분석
얼굴 검출
얼굴 표식 및 속성(attribute)
캐글 키포인트 데이터셋
얼굴 인식
얼굴 클러스터링
요약

7장. 이미지 캡션 처리
문제 및 데이터셋 이해하기
이미지 캡션을 위한 자연어 처리 이해
벡터 형태로 단어 표현하기
단어를 벡터로 변환
임베딩 훈련
이미지 캡션 및 관련 문제에 대한 접근 방법
조건부 랜덤 필드를 사용해 이미지와 텍스트 연결하기
CNN 기능에서 RNN을 사용해 자막 생성
이미지 순위를 사용해 자막 만들기
이미지와 이미지에서 캡션 가져오기
밀집 캡션
캡션에 RNN 사용하기
다중 모달 측정 항목 공간 사용하기
캡션 작성 시 관심 네트워크 사용하기
언제 살펴봐야 할지 파악하기
관심 기반 이미지 캡션 방법 구현하기
요약

8장. 생성 모델
생성 모델의 애플리케이션
예술적 스타일 이전 방법
동영상의 다음 프레임 예측 방법
슈퍼 해상도 이미지
대화형 이미지 생성하기
이미지를 이미지로 변환하기
텍스트로 이미지 생성하기
불필요 제거
블렌딩
속성 변환하기
훈련 데이터 생성
새 애니메이션 캐릭터 만들기
사진으로부터 3D 모델 생성
신경 예술 스타일 전송
콘텐츠 손실
그램 매트릭스를 사용한 스타일 손실
스타일 전송
GAN
바닐라 GAN
조건부 GAN
적대적 손실
이미지 변환
InfoGAN
GAN의 단점
VDM
VDM 알고리즘
요약

9장. 동영상 분류
동영상의 이해 및 분류
동영상 분류 데이터셋 탐색
동영상을 프레임으로 분할하기
동영상 분류 접근법
동영상에 대한 이미지 기반 접근법 확장
사람의 포즈도 적용하기
동영상 분할
동영상 캡션
동영상 생성
요약

10장. 배포
모델 성능
모델 양자화
MobileNets
클라우드에서 배포하기
AWS
구글 클라우드 플랫폼
장치에 모델 배포하기
Jetson TX2
안드로이드
아이폰

책 속으로

출판사 서평

★ 이 책의 구성 ★ 1장. ‘시작하기’에서는 딥러닝의 기초를 소개하며, 초보자는 어휘에 익숙해질 시간을 갖게 된다. 이후 장을 수행하는 데 필요한 소프트웨어 패키지 설치에 대한 내용도 다룬다 . 2장. ‘이미지 분류’에서는 이미지 전체에 레이...

[출판사서평 더 보기]

★ 이 책의 구성 ★

1장. ‘시작하기’에서는 딥러닝의 기초를 소개하며, 초보자는 어휘에 익숙해질 시간을 갖게 된다. 이후 장을 수행하는 데 필요한 소프트웨어 패키지 설치에 대한 내용도 다룬다 .
2장. ‘이미지 분류’에서는 이미지 전체에 레이블을 붙이는 이미지 분류 문제를 설명한다. 이미지 분류 기술에 대해 배우고 애완동물 분류에 대한 딥러닝 모델을 훈련할 수 있다. 또한 정확도를 높이고 다양한 고급 아키텍처에 대한 심도 있는 내용을 배우게 된다.
3장. ‘이미지 검색’에서는 심층 특징(deep feature)과 이미지 검색을 다룬다. 모델 시각화, 시각적 기능, 텐서플로(TensorFlow)를 사용한 추론, 제품 검색을 위한 시각적 기능 제공 및 사용에 대한 다양한 방법을 학습할 수 있다.
4장. ‘객체 검출’에서는 이미지의 객체 검출을 설명한다. 다양한 객체 검출 기술을 배우고 이를 보행자 검출(pedestrian detection)에 적용할 수 있다. 객체 검출을 위한 텐서플로 API가 이 장에서 활용된다.
5장. ‘시맨틱 분할’에서는 픽셀 단위로 이미지를 분할하는 것을 다룬다. 분할 기법에 대한 지식을 얻고 의료 이미지의 분할 모델을 훈련할 수 있다.
6장. ‘유사도 학습’에서는 유사도 학습에 대해 이야기한다. 유사도 매칭(similarity matching)과 얼굴 인식을 위한 모델을 훈련시키는 방법을 배우게 된다. 얼굴 표식(face landmark)을 훈련시키는 모델이 설명된다.
7장. ‘이미지 캡션’에서는 이미지의 캡션을 생성하거나 선택하는 것을 다룬다. 자연어 처리 기술과 이 기술을 사용해 이미지 캡션을 생성하는 방법을 배운다.
8장. ‘생성 모델’에서는 다양한 목적으로 합성 이미지를 생성하는 방법을 설명한다. 독자는 이 장을 통해 생성 모델이 무엇인지 배우고, 스타일 전송과 훈련 데이터 등의 이미지 생성 애플리케이션 프로그램에 적용할 수 있다.
9장. ‘동영상 분류’에서는 동영상 데이터에 대한 컴퓨터 비전 기술을 다룬다. 동영상 문제와 이미지 문제의 주요 차이점을 이해하고 동영상 분류 기술을 구현해본다.
10장. ‘배포’에서는 심화 학습 모델의 배포 단계를 설명한다. 훈련된 모델을 배치하고 다양한 속도에 맞게 최적화하는 방법을 배울 수 있다.

★ 이 책에서 다루는 내용 ★

■ 케라스와 텐서플로에 대한 환경 설정
■ 애완동물 분류 제약 사항을 고려한 이미지 분류와 딥러닝 모델 훈련 방법 학습
■ 모델의 심층 레이어 이해
■ 이미지 추출 문제를 해결하기 위한 사전 훈련된 모델의 사용 방법
■ 검출 방법 이해와 보행자 검출 적용
■ 이미지 캡션 방법의 학습 및 구현
■ GAN을 사용해 이미지를 생성할 수 있는 모델 훈련
■ 동영상 분류 방법의 확인 및 실제 구현
■ 다양한 플랫폼에 실제 훈련된 모델 적용

★ 옮긴이의 말 ★

컴퓨터 비전은 컴퓨터에 시각을 부여해 이미지를 분석함으로써 유용한 정보를 생성하는 기술이다. 비전 기술은 컴퓨터나 로봇 등을 통해 얼굴, 건물 등의 다양한 객체를 인식하는 데 응용되며, 인공지능 기술이 발전하면서 객체 인식 기술의 진화 속도는 빨라지고 있다.
컴퓨터가 사물을 정확하게 인식해 유용한 정보를 제공할 수 있게 되면서 컴퓨터 인터페이스에 변혁이 일어나고 있다. 아이폰 X에는 얼굴을 인식하는 기능인 페이스 ID가 탑재됐고, 스마트폰의 카메라를 이용한 신용카드 스캔 등의 기술이 실제로 적용되고 있다.
컴퓨터 비전을 구현하기 위한 사용자의 프로젝트에서 컴퓨터 비전 알고리즘을 시작하길 원하더라도, 어디서부터 시작해야 할지 다소 막막할 수 있다. 컴퓨터 비전 엔지니어라 해도, 심도 있게 접근하거나 더 많은 내용을 배우려면 많은 기술을 알아야 한다.
이와 같은 목적을 달성하려면 실전 경험이 가장 중요하다. 실제 문제를 해결하는 방법을 통해 현존하는 방법들을 사용자의 요구 사항에 맞춰 수행해야 하며, 샘플 코드들을 통해 컴퓨터 비전 알고리즘의 가능성과 한계를 충분히 이해해 나가야 한다.
이 책은 실제 컴퓨터 비전 작업을 할 때 직접적으로 큰 도움이 될 수 있도록 구성됐다. 텐서플로(TensorFlow)를 사용해 추론, 제품 검색을 위한 시각적 기능의 제공 및 다양한 사용 방법을 학습할 수 있고, 유사도 매칭(similarity matching)과 얼굴 인식을 위한 모델을 훈련시키는 방법도 배울 수 있다.
이러한 내용들을 다룬 이 책은 딥러닝 학습을 위한 많은 내용들을 담고 있으며 이해하기 쉽게 예제 코드와 그 결과물까지 한꺼번에 보여준다.
컴퓨터 비전 학습을 위한 시맨틱 분할(semantic segmentation), 유사도 학습(similarity learning), 이미지 캡션(image caption), 생성 모델(generative model), 동영상 분류(video classification)에 대해 알기 쉽게 설명해주므로 데이터 기반 컴퓨터 비전 기술에 대한 지식을 한 번에 쉽게 습득할 수 있다.
모든 독자들이 텐서플로/케라스(Keras)와 딥러닝 등에 대한 기본 이론을 이해하고 실제로 구현하는 데 많은 도움이 되길 진심으로 바란다. 각각의 심오한 주제와 관련된 내용 전체를 하나씩 천천히 끄집어낸 후 설명하고 있으므로 순서대로 읽다 보면 전반적인 내용을 충분히 파악할 수 있을 것이다.

[출판사서평 더 보기 닫기]

책 속 한 문장

회원리뷰

교환/반품안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품안내
반품/교환방법

[판매자 페이지>취소/반품관리>반품요청] 접수
또는 [1:1상담>반품/교환/환불], 고객센터 (1544-1900)

※ 중고도서의 경우 재고가 한정되어 있으므로 교환이 불가할 수 있으며, 해당 상품의 경우 상품에 대한 책임은 판매자에게 있으며 교환/반품 접수 전에 반드시 판매자와 사전 협의를 하여주시기 바랍니다.

반품/교환가능 기간

변심반품의 경우 수령 후 7일 이내, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

※ 중고도서의 경우 판매자와 사전의 협의하여주신 후 교환/반품 접수가 가능합니다.

반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유

소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우(단지 확인을 위한 포장 훼손은 제외)

소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 예) 화장품, 식품, 가전제품 등

복제가 가능한 상품 등의 포장을 훼손한 경우 예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)

디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우

시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품이므로 단순 변심 및 착오로 인한 취소/교환/반품 시 해외주문 반품/취소 수수료 고객 부담 (해외주문 반품/취소 수수료는 판매정가의 20%를 적용

2) 중고도서 : 반품/교환접수없이 반송하거나 우편으로 접수되어 상품 확인이 어려운 경우

소비자 피해보상
환불지연에 따른 배상

- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

- 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

판매자
책책북북
판매등급
특급셀러
판매자구분
일반
구매만족도
5점 만점에 5점
평균 출고일 안내
2일 이내
품절 통보율 안내
23%

바로가기

최근 본 상품