본문내용 바로가기

KYOBO 교보문고

교보문고 39주년
2020다이어리
매일 선착순 2,000원
ebook전종 30%할인
  • 수요낭독공감 11월 행사
  • 제5회 교보손글쓰기대회 수상작 전시
  • 북모닝 책강
Nanostructured Coatings
* 중고장터 판매상품은 판매자가 직접 등록/판매하는 상품으로 판매자가 해당상품과 내용에 모든 책임을 집니다. 우측의 제품상태와 하단의 상품상세를 꼭 확인하신 후 구입해주시기 바랍니다.
페이지 : 정보준비중 | * * (cm)
ISBN-10 : 0387256423
ISBN-13 : 9780387256429
Nanostructured Coatings [Paperback] 중고
저자 Cavaleiro, Albano | 출판사 Springer
정가
233,070원
판매가
153,990원 [34%↓, 79,080원 할인]
배송비
3,500원 (판매자 직접배송)
35,000원 이상 결제 시 무료배송
지금 주문하시면 2일 이내 출고 가능합니다.
더보기
2006년 10월 1일 출간
제품상태
상태 최상 외형 최상 내형 최상

[상태 상세 항목] 선택 해당 사항있음 미선택 해당 사항없음

1.외형 상세 미선택 낙서 미선택 얼룩 미선택 접힘 미선택 낙장(뜯어짐) 미선택 찢김 미선택 변색 미선택 제본불량 미선택 부록있음 [* 사용하지 않은 새 책입니다.]

2.내형 상세 미선택 낙서 미선택 얼룩 미선택 접힘 미선택 낙장(뜯어짐) 미선택 찢김 미선택 변색 [* 사용하지 않은 새 책입니다.]

이 상품 최저가
153,990원 다른가격더보기
새 상품
186,460원 [20%↓, 46,610원 할인] 새상품 바로가기
수량추가 수량빼기
안내 :

중고장터에 등록된 판매 상품과 제품의 상태는 개별 오픈마켓 판매자들이 등록, 판매하는 것으로 중개 시스템만을 제공하는
인터넷 교보문고에서는 해당 상품과 내용에 대해 일체 책임을 지지 않습니다.

교보문고 결제시스템을 이용하지 않은 직거래로 인한 피해 발생시, 교보문고는 일체의 책임을 지지 않습니다.

중고책 추천 (판매자 다른 상품)

더보기

판매자 상품 소개

※ 해당 상품은 교보문고에서 제공하는 정보를 활용하여 안내하는 상품으로제품 상태를 반드시 확인하신 후 구입하여주시기 바랍니다.

Nanostructured Coatings

* 사용하지 않은 새 책입니다.

ISBN : 9780387256429
Hardback
Copyright : 2006
Press : Springer

판매자 배송 정책

  • *토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다. *단순변심으로 인한 구매취소 및 환불에 대한 배송비는 구매자 부담입니다. *제주 및 산간지역에는 추가배송비용이 부과됩니다.

더보기

구매후기 목록
NO 구매후기 구매만족도 ID 등록일
23 배송도 빠르고 일부 오염은 있지만 도서 상태 매우 좋습니다. 좋은 결과 있도록 열공해야죠. 감사합니다 5점 만점에 5점 sjj1*** 2019.09.11
22 구매후 배송이 매우 빠릅니다. 책 안전하게 잘 받았습니다~ 5점 만점에 5점 nanh*** 2019.08.05
21 배송이 정말 빠릅니다! 5점 만점에 5점 daelim*** 2019.04.30
20 중고 책이 아니라 새 책이네요. 너무 깨끗한 책이고 외국 도서라 중고 책 구하기 힘들었는데 새책 같은 중고 책 구해서 너무 기분이 좋아요. 포장도 꼼꼼하게 잘 해주셔서 감사합니다. 5점 만점에 5점 jg*** 2019.03.10
19 좀 비싸지만 좋습니다. 5점 만점에 5점 kimpp*** 2019.03.05

이 책의 시리즈

책 소개

상품구성 목록
상품구성 목록

There is a need for materials of exceptional hardness in order to coat mechanical components. One way to do this is take advantage of the properties of nanostructured materials. This book gives an insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. In addition to the above-mentioned hardness, this type of coating often needs mechanical properties such as excellent adhesion to the substrate and very high fracture toughness and other requirements. Their use in chemical aggressive environments at very high temperatures demand also very high oxidation/corrosion resistance and thermal stability. Thus, increasing worry has being adopted by researchers in this field concerning the development of coatings that could present simultaneously all the necessary properties to guarantee a successful implementation in real mechanical applications.

저자소개

목차


1. Galileo Comes to the Surface! 1(26)
Jeff Th. M. De Hosson and Albano Cavaleiro
1. Introduction 1(1)
2. Coatings 2(2)
3. Challenges and Opportunities 4(17)
3.1. Wear: The Role of Interfaces in Nanostructured Materials 4(5)
3.2. Friction: Size Effects in Nanostructured Coatings 9(7)
3.3. Tribological Properties: The Role of Roughness 16(5)
4. Leitmotiv and Objective 21(2)
Acknowledgments 23(1)
References 24(3)
2. Size Effects on Deformation and Fracture of Nanostructured Metals 27(51)
Benedikt Moser, Ruth Schwaiger, and Ming Dao
1. Introduction 27(1)
2. Mechanical Testing of Nanostructured Bulk and Thin Film Materials 28(6)
2.1. Tensile and Compression Testing 28(2)
2.2. Indentation Testing: Experimental Technique and Computations 30(3)
2.3. Cantilever Bending 33(1)
2.4. In Situ Testing Technique 34(1)
3. Deformation and Fracture Under Microstructural Constraint 34(23)
3.1. Crystalline Materials 34(19)
3.1.1. Microstructure 34(2)
3.1.2. Monotonic Deformation 36(14)
3.1.3. Monotonic Fracture 50(1)
3.1.4. Cyclic Deformation 51(2)
3.2. Amorphous Materials 53(4)
3.2.1. Yield Function 54(2)
3.2.2. Serrated Flow in Bulk Metallic Glasses 56(1)
3.2.3. Stress-Induced Nanocrystallization 57(1)
4. Deformation Under Dimensional Constraint 57(9)
4.1. Yield Stress and Hardening 57(6)
4.2. Cyclic Deformation 63(3)
5. Concluding Remarks 66(1)
References 67(11)
3. Defects and Deformation Mechanisms in Nanostructured Coatings 78(31)
Ilya A. Ovid'ko
1. Introduction 78(2)
2. Deformation Mechanisms in Nanocrystalline Coatings: General View 80(2)
3. Lattice Dislocation Slip 82(3)
4. Grain Boundary Sliding 85(4)
5. Rotational Deformation Mechanisms 89(4)
6. Grain Boundary Diffusional Creep (Coble Creep) and Triple Junction Diffusional Creep 93(2)
7. Interaction Between Deformation Modes in Nanocrystalline Coating Materials: Emission of Dislocations from Grain Boundaries 95(2)
8. Defects and Plastic Deformation Releasing Internal Stresses in Nanostructured Films and Coatings 97(4)
9. Concluding Remarks 101(1)
Acknowledgments 102(1)
References 102(7)
4. Nanoindentation in Nanocrystalline Metallic Layers: A Molecular Dynamics Study on Size Effects 109(34)
Helena Van Swygenhoven, Abdellatif Hasnaoui, and Peter M. Derlet
1. Introduction 109(2)
2. Atomistic Modeling 111(10)
2.1. Molecular Dynamics 112(1)
2.2. Steepest Descent and Conjugate Gradient Methods 113(1)
2.3. Interatomic Potentials 114(1)
2.4. Creation of Nanocrystalline Atomistic Configurations 115(1)
2.5. Atomistic Nanoindentation Simulation Geometry 116(2)
2.6. Atomistic Visualization Methods for GB and GB Network Structure 118(2)
2.7. The Time- and Length-Scale Problem 120(1)
3. The Deformation Mechanisms at the Atomic Level in Nano-Sized Grains Beneath the Indenter 121(17)
3.1. Deformation Mechanisms in nc fcc Metals Derived from Tensile Loading 121(1)
3.2. Atomistic Mechanism under the Indenter 122(4)
3.3. Interaction of Dislocations with the GB Network 126(3)
3.4. The Ratio between Indenter Size and Grain Size 129(5)
3.5. Material Pileup 134(2)
3.6. Unloading Phase 136(2)
4. Discussion and Outlook 138(1)
References 139(4)
5. Electron Microscopy Characterization of Nanostructured Coatings 143(73)
Jeff Th. M. De Hosson, Nuno J.M. Carvalho, Yutao Pei, and Damiano Galvan
1. Introduction 143(3)
2. Description of the Experimental Methodology 146(16)
2.1. Materials 146(1)
2.2. Characterization with Electron Microscopy Techniques 147(13)
2.3. TEM Sample Preparation 160(2)
3. Microstructure of Diamond-Like Carbon Multilayers 162(19)
3.1. DLC Coatings 162(1)
3.2. Coated Systems 163(9)
3.3. Particles Inside an Amorphous Structure 172(3)
3.4. Defect Structure 175(1)
3.5. Mechanisms of Crack Propagation 176(5)
4. Characterization of TiN and TiN?Ti,A1) Multilayers 181(18)
4.1. Transition Metal Nitrides 181(3)
4.2. Microstructural Features 184(5)
4.3. Formation and Microstructure of Macroparticles 189(3)
4.4. Nanoindentation Response 192(7)
5. Outlook 199(10)
Acknowledgments 209(1)
References 209(7)
6. Measurement of Hardness and Young's Modulus by Nanoindentation 216(45)
Thomas Chudoba
1. Introduction 216(1)
2. Theory of Indentation Measurements 217(9)
3. Influence and Determination of Instrument Compliance 226(7)
4. Influence and Determination of Indenter Area Function 233(6)
5. Additional Corrections for High-Accuracy Data Analysis 239(4)
5.1. Thermal Drift Correction 239(3)
5.2. Zero Point Correction 242(1)
6. Specific Problems with the Measurement of Thin Hard Coatings 243(8)
6.1. Consideration of Substrate Influence 243(7)
6.2. Sink-In and Pileup Effects 250(1)
7. Limits for Comparable Hardness Measurements 251(4)
8. Young's Modulus Measurements with Spherical Indenters 255(3)
Acknowledgments 258(1)
References 258(3)
7. The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part I?itrides 261(86)
Albano Cavaleiro, Bruno Trindade, and Maria Teresa Vieira
1. Introduction 261(2)
2. The Addition of Aluminum to TM Nitrides 263(4)
3. Ternary Nitrides with TM Elements from the IV, V, and VI Groups 267(3)
4. The Specific Case of the Addition of Si to TM Nitrides 270(4)
5. Addition of Low N-Affinity Elements to TM Nitrides 274(1)
6. W-Based Coatings 275(31)
6.1. The Binary System W-X 275(4)
6.1.1. Chemical Composition and Structural Features 275(2)
6.1.2. Hardness 277(2)
6.2. The Ternary System W?? 279(44)
6.2.1. Coatings with the bcc α-W Phase 279(4)
6.2.2. Coatings with the fcc Nitride Phase 283(5)
6.2.3. As-Deposited Amorphous Coatings 288(2)
6.2.4. Achievement of Nanocrystalline Structures from the Crystallization of Amorphous Films of the TM-Si-N System 290(4)
6.2.5. Evolution of the Chemical Composition of TM-Si-N Films During Thermal Annealing 294(1)
6.2.6. Mechanical Properties of TM-Si-N Coatings after Thermal Annealing 295(11)
7. Conclusion 306(1)
Acknowledgments 307(1)
References 307(8)
8. The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-MetalBased Nanostructured Hard Films: Part II?arbides 315(1)
Bruno Trindade, Albano Cavaleiro, and Maria Teresa Vieira
1. Introduction 315(3)
2. Amorphous Carbide Thin Films Deposited by Sputtering 318(1)
3. Structural Models for Prediction of Amorphous Phase Formation 318(5)
4. Amorphous Phase Formation in TM-Tmi-C (TM and TM1 = Transition Metals) Sputtered Films 323(9)
4.1. TM-Fe-C (TM = Ti, V, W, Mo, Cr) Thin Films 323(4)
4.2. W-TM-C (TM = Ti, Cr, Fe, Co, Ni , Pd, and Au) Thin Films 327(5)
5. Hardness and Young's Modulus of Sputtered TM-Tmi-C Thin Films 332(7)
5.1. Ternary TM-C/TM1-C Systems (TM = Group VA Metal; TM1 = Group VIA Metal) 332(3)
5.2. Other Ternary TM-TM1-C Systems 335(4)
6. Thermal Stability of Sputtered Amorphous M1-M2-C Thin Films 339(3)
7. Conclusions 342(1)
References 343(4)
9. Concept for the Design of Superhard Nanocomposites with High Thermal Stability: Their Preparation, Properties, and Industrial Applications 347(60)
Stan Veprek and Maritza G. J. Veprek-Heijman
1. Introduction 347(5)
1.1. Possible Artifacts During Hardness Measurement on Superhard Coatings 348(3)
1.2. Requirements on the Thickness of the Coatings 351(1)
2. The Earlier Work 352(3)
3. Superhard Nanocomposites in Comparison with Hardening by Ion Bombardment 355(4)
4. Superhard Nanocomposites with High Thermal Stability 359(22)
4.1. The Design Concept for the Deposition of Stable Superhard Nanocomposites 359(10)
4.2. Properties of the Fully Segregated Superhard Nanocomposites 369(12)
4.2.1. Thermal Stability, "Self-Hardening," and Stabilization of (Al1-x,Tix)N 369(6)
4.2.2. Oxidation Resistance 375(3)
4.2.3. Morphology and Microstructure 378(3)
5. Reproducibility of the Preparation of Superhard, Stable Nanocomposites 381(9)
5.1. The Role of Impurities 381(4)
5.2. Conditions Needed to Obtain Complete Phase Segregation During the Deposition 385(3)
5.3. Conditions Needed to Achieve Hardness of 80 to > or equal to 100 GPa 388(2)
6. Mechanical Properties of Superhard Nanocomposites
390(7)
6.1. Recent Progress in the Understanding of the Extraordinary Mechanical Properties
390(2)
6.2. The Resistance Against Brittle Fracture
392(1)
6.3. High Elastic Recovery
393(2)
6.4. Ideal Decohesion Strength
395(1)
6.5. The Future Research Work
396(1)
7. Industrial Applications
397(3)
Acknowledgments
400(1)
References
400(7)
10, Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering 407(1)
J. Musil

1. Introduction
407(1)
2. Formation of Nanocrystalline and Nanocomposite Coatings
408(5)
2.1. Low-Energy Ion Bombardment
408(1)
2.2. Mixing Process
409(1)
2.3. Structure of Films
409(4)
3. Microstructure of Nanocomposite Coatings
413(2)
4. Role of Energy in the Formation of Nanostructured Films
415(11)
4.1. Ion Bombardment in Reactive Sputtering of Films
417(2)
4.2. Effect of Ion Bombardment on Elemental Composition of Sputtered Films
419(2)
4.2.1. Resputtering of Cu from Zr-Cu-N Films
420(1)
4.2.2. Desorption of Nitrogen from Sputtered Nitride Films
420(1)
4.3. Effect of Ion Bombardment on Physical Properties of the Film
421(2)
4.4. Ion Bombardment of Growing Films in Pulsed Sputtering
423(3)
5. Enhanced Hardness
426(15)
5.1. Open Problems in Formation of Nanocomposite Films with Enhanced Hardness
428(1)
5.2. Macrostress in Sputtered Films
428(5)
5.3. High-Stress Sputtered Films
433(1)
5.4. Low-Stress Sputtered Films
434(7)
5.4.1. Effect of Chemical Bonding
434(2)
5.4.2. Effect of Grain Size
436(1)
5.4.3. Effect of Deposition Rate al:, on Macrostress σ
436(2)
5.4.4. Macrostress σ in X-ray Amorphous Films
438(3)
5.5. Concluding Remarks on Reduction of Macrostress σ in Superhard Films
441(1)
6. Origin of Enhanced Hardness in Single-Phase Films
441(2)
7. Classification of Nanocomposites According to Their Structure and Microstructure
443(2)
8. Mechanical Properties of Hard Nanocomposite Coatings
445(5)
8.1. Interrelationships between Mechanical Properties of Reactively Sputtered Ti(Fe)Nx Films and Modes of Sputtering
447(1)
8.2. Effect of Stoichiometry x and Energy Epi on Resistance to Plastic Deformation and Hardness of Reactively Sputtered Ti(Fe)Nx Films
448(2)
9. Trends of Future Development
450(3)
Acknowledgments
453(1)
References
453(11)
11. Thermal Stability of Advanced Nanostructured Wear-Resistant Coatings 464(1)
Lars Hultman and Christian Mitterer

1. Introduction
464(1)
2. Measurement Techniques
465(5)
2.1. Biaxial Stress?emperature Measurements
466(2)
2.2. Differential Scanning Calorimetry and Thermogravimetric Analysis
468(2)
3. Recovery
470(10)
3.1. Single-Phase Coatings
470(7)
3.1.1. Compound and Miscible Systems
470(6)
3.1.2. Pseudo-Binary Immiscible Systems
476(1)
3.2. Multiphase Coatings
477(3)
3.2.1. Nanocomposite Coatings
477(2)
3.2.2. Superlattices
479(1)
4. Recrystallization and Grain Growth
480(9)
4.1. Single-Phase Coatings
480(3)
4.1.1. Compound and Miscible Systems
480(2)
4.1.2. Pseudo-Binary Immiscible Systems
482(1)
4.2. Multiphase Coatings
483(6)
4.2.1. Nanocomposite Coatings
483(3)
4.2.2. Superlattices
486(3)
5. Phase Separation in Metastable Pseudo-Binary Nitrides
489(6)
5.1. Spinodal Decomposition
489(4)
5.2. Age Hardening
493(2)
6. Interdiffusion
495(2)
7. Oxidation
497(3)
7.1. Alloying of Hard Coatings to Improve Oxidation Resistance
497(2)
7.2. Self-Adaptation by Oxidation
499(1)
8. Conclusions and Outlook
500(2)
Acknowledgments
502(1)
References
502(9)
12. Optimization of Nanostructured Tribological Coatings 511(1)
Adrian Leyland and Allan Matthews

1. Introduction
511(2)
2. The Significance of H/E in Determining Coating Performance
513(4)
3. Practical Considerations for Vapor Deposition of Nanostructured Coatings
517(1)
4. Design and Materials Considerations for Metallic-Nanocomposite and Glassy-Metal Films
518(8)
4.1. Background to Metal Nanocomposite Films
518(2)
4.2. Design Considerations
520(2)
4.3. Materials Selection for Nanostructured and Glassy Films
522(4)
5. Examples of PVD Metallic Nanostructured and Glassy Films
526(5)
5.1. CrCu(N) and MoCu(N) Nanostructured Films
526(2)
5.2. CrTiCu(B,N) Glassy Metal Films
528(3)
6. Adaptive Coatings
531(2)
7. Summary
533(1)
References
534(5)
13. Synthesis, Structure, and Properties of Superhard Superlattice Coatings 539(1)
Lars Hultman

1. Introduction
539(1)
2. Growth of Superlattice Films
540(3)
3. Origin of Superhardening
543(2)
4. Mechanical Deformation and Wear Mechanisms
545(6)
5. Conclusions
551(1)
References
552(3)
14. Synthesis Structured, and Applications of Nanoscale Multilayer/Superlattice Structured PVD Coatings 555(1)
P. Eh. Hovsepian and W.-D. M?z

1. Aspects of Industrial Deposition of Nanoscale Multilayer/Superlattice Hard Coatings
555(31)
1.1. Introduction
555(2)
1.2. Production Aspects
557(5)
1.3. Arc Bond Sputtering Interface
562(6)
1.4. Main Criteria Defining Superlattice Structure
568(9)
1.5. Texture and Residual Stress
577(6)
1.6. Mechanical and Tribological Properties
583(3)
2. Industrial Applications of Various Nanoscale Multilayer/Superlattice Structured PVD Coatings
586(52)
2.1. Application-Tailored Superlattice Coating Family
586(1)
2.2. Superlattice Coatings Dedicated to Serve High-Temperature Applications
587(14)
2.2.1. Structure and High-Temperature Behavior of TiAlCrN/TiAlYN and TiA1N/CrN Nanoscale Multilayer Coatings
587(5)
2.2.2. Application of TiA1CrN/TiA1YN in Dry High-Speed Cutting Operations
592(4)
2.2.3. Application of TiA1CrN/TiA1YN in Forming and Forging Operations
596(2)
2.2.4. Application of TiA1CrN/TiA1YN, and TiA1N/CrN in Protection of Gamma Titanium Aluminides
598(3)
2.3. Superhard Low-Friction Superlattice Coatings and Their Applications
601(10)
2.3.1. Structure and Tribological Properties of TiA1N/VN Superlattice Coating
601(5)
2.3.2. Application of TiA1N/VN Superlattice Coatings in Dry High-Speed Machining of Medium-Hardness Low-Alloyed and Ni-Based Steels
606(2)
2.3.3. Application of TiA1N/VN Superlattice Coatings in Dry High-Speed Machining of Al Alloys
608(3)
2.4. Nanoscale Multilayer Coatings Designed For Very Low Friction and Their Applications
611(7)
2.4.1. Structure and Tribological Properties of C/Cr Nanoscale Multilayer Coatings
611(6)
2.4.2. Application of Nanoscale Multilayer C/Cr Coating in Machining of Ni-Based Alloys
617(1)
2.5. CrN/NbN Superlattice Coating Designed for High Corrosion and Wear Applications
618(20)
2.5.1. Microstructure and Corrosion Resistance of CrN/NbN Superlattice Coatings
618(6)
2.5.2. Tribological Performance of CrN/NbN Superlattice Coatings
624(3)
2.5.3. High-Temperature Performance of CrN/NbN Superlattice Coatings
627(1)
2.5.4. Application of CrN/NbN Superlattice Coatings in Textile Industry
628(5)
2.5.5. Application of CrN/NbN Superlattice Coatings in Cutlery Industry
633(2)
2.5.6. Application of CrN/NbN Superlattice Coatings in Printing Industry
635(1)
2.5.7. Application of CrN/NbN Superlattice Coatings in Leather Industry
636(1)
2.5.8. Application of CrN/NbN Superlattice Coatings for Protection of Surgical Blades
636(2)
References
638(7)
Index 645

책 속으로

출판사 서평

책 속 한 문장

회원리뷰

이 책과 함께 구매한 책들

이 책이 속한 분야 베스트

교환/반품안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품안내
반품/교환방법

[판매자 페이지>취소/반품관리>반품요청] 접수
또는 [1:1상담>반품/교환/환불], 고객센터 (1544-1900)

※ 중고도서의 경우 재고가 한정되어 있으므로 교환이 불가할 수 있으며, 해당 상품의 경우 상품에 대한 책임은 판매자에게 있으며 교환/반품 접수 전에 반드시 판매자와 사전 협의를 하여주시기 바랍니다.

반품/교환가능 기간

변심반품의 경우 수령 후 7일 이내, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

※ 중고도서의 경우 판매자와 사전의 협의하여주신 후 교환/반품 접수가 가능합니다.

반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유

소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우(단지 확인을 위한 포장 훼손은 제외)

소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 예) 화장품, 식품, 가전제품 등

복제가 가능한 상품 등의 포장을 훼손한 경우 예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)

디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우

시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품이므로 단순 변심 및 착오로 인한 취소/교환/반품 시 해외주문 반품/취소 수수료 고객 부담 (해외주문 반품/취소 수수료는 판매정가의 20%를 적용

2) 중고도서 : 반품/교환접수없이 반송하거나 우편으로 접수되어 상품 확인이 어려운 경우

소비자 피해보상
환불지연에 따른 배상

- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

- 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

판매자
DGBooks
판매등급
우수셀러
판매자구분
사업자
구매만족도
5점 만점에 5점
평균 출고일 안내
1일 이내
품절 통보율 안내
1%

바로가기

최근 본 상품