본문내용 바로가기

KYOBO 교보문고

금/토/일 주말특가
매일 500원 복돋움 캐시
[VORA]첫글만 남겨도 VORA가 쏩니다
숨겨진독립자금을찾아서
  • 교보손글쓰기대회 전시
  • 손글씨스타
  • 세이브더칠드런
  • 손글씨풍경
한국어 임베딩
348쪽 | | 189*236*22mm
ISBN-10 : 1161753508
ISBN-13 : 9791161753508
한국어 임베딩 중고
저자 이기창 | 출판사 에이콘출판
정가
35,000원 신간
판매가
29,390원 [16%↓, 5,610원 할인]
배송비
2,500원 (판매자 직접배송)
지금 주문하시면 2일 이내 출고 가능합니다.
토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다.
2019년 9월 26일 출간
제품상태
상태 최상 외형 최상 내형 최상
이 상품 최저가
27,900원 다른가격더보기
새 상품
31,500원 [10%↓, 3,500원 할인] 새상품 바로가기
수량추가 수량빼기

중고장터에 등록된 판매상품과 제품의 상태는 개별 판매자들이 등록, 판매하는 것으로 중개시스템만을 제공하는 교보문고는 해당 상품과 내용에 대해 일체 책임을 지지 않습니다. 상단 제품상태와 하단 상품 상세를 꼭 확인하신 후 구입해주시기 바랍니다.

교보문고 결제 시스템을 이용하지 않은 직거래로 인한 피해 발생 시 교보문고는 일체 책임을 지지 않습니다.

중고장터에 등록된 판매 상품과 제품의 상태는 개별 오픈마켓 판매자들이 등록, 판매하는 것으로 중개 시스템만을 제공하는
인터넷 교보문고에서는 해당 상품과 내용에 대해 일체 책임을 지지 않습니다.

교보문고 결제시스템을 이용하지 않은 직거래로 인한 피해 발생시, 교보문고는 일체의 책임을 지지 않습니다.

중고책 추천 (판매자 다른 상품)

더보기

판매자 상품 소개

※ 해당 상품은 교보문고에서 제공하는 정보를 활용하여 안내하는 상품으로제품 상태를 반드시 확인하신 후 구입하여주시기 바랍니다.

판매자 배송 정책

  • 토/일, 공휴일을 제외한 영업일 기준으로 배송이 진행됩니다.

더보기

구매후기 목록
NO 구매후기 구매만족도 ID 등록일
91 도서 상태도 좋고 총알 배송 감사합니다. 5점 만점에 5점 ymyoo*** 2020.10.24
90 좋은 품질의 책을 저렴한 가격에 판매해 주셔서 감사합니다 5점 만점에 5점 modori*** 2020.10.19
89 배송빠르고 상품 좋아요 5점 만점에 5점 forever*** 2020.10.06
88 배송도 깔끔하고 잘 받았습니다. 5점 만점에 5점 pega1*** 2020.10.06
87 좋은 책 보내 주셔서 감사합니다. 5점 만점에 5점 che*** 2020.09.23

이 책의 시리즈

책 소개

상품구성 목록
상품구성 목록

자연어 처리 모델의 성능을 높이는 핵심 비결, 〈한국어 임베딩〉
임베딩(embedding)은 자연어를 숫자의 나열인 벡터로 바꾼 결과 혹은 그 일련의 과정 전체를 가리키는 용어다. 단어나 문장 각각을 벡터로 변환해 벡터 공간에 '끼워 넣는다(embed)'는 취지에서 임베딩이라는 이름이 붙었다. 컴퓨터가 자연어를 처리할 수 있게 하려면 자연어를 계산 가능한 형식인 임베딩으로 바꿔줘야 한다.
임베딩은 컴퓨터가 자연어를 이해하도록 하는 첫 관문으로 매우 중요한 기능을 한다. 자연어 처리 모델의 성능은 임베딩이 좌우한다고 해도 과언이 아니다. 이 책에서는 다양한 임베딩 기법을 일별하고 한국어 데이터 전처리, 임베딩 구축에 이르는 전 과정을 튜토리얼 방식으로 소개한다. Word2Vec 등 단어 수준 기법부터 ELMo, BERT 등 문장 수준 임베딩까지 다룬다.

저자소개

저자 : 이기창
서울대학교 국어국문학과를 졸업하고 고려대학교 대학원에서 공학 석사 학위(산업경영공학)를 취득했다. 문장 범주 분류에 큰 영향을 미치는 단어들에 높은 점수를 주는 기법에 대한 논문(SCI 저널 게재)에 1저자로 참여했다. 현재 네이버에서 대화 모델을 개발하고 있다. 주요 업무는 임베딩 학습 및 구축이다. 문장 생성(text generation)에 관심이 많다. 자연어 처리를 주제로 블로그(http://ratsgo.github.io)를 운영하고 있다. 딥러닝과 자연어 처리의 무궁무진한 가능성을 믿는다.

감수 : NAVER Chatbot Model
지은이가 속해 있는 팀으로, 인공지능 비서 ‘클로바(CLOVA)’의 대화 엔진을 한국어와 일본어로 서비스하고 있다. 서드파티 개발사를 대상으로 한 인공지능 플랫폼 ‘클로바 익스텐션 키트’와 ‘네이버 비즈니스 플랫폼’에 탑재된 챗봇 엔진 개발을 맡고 있다. 한국 네이버와 일본 라인(LINE)의 챗봇형 고객센터를 운영하고 있다. 핵심 멤버는 ‘동천 AI 클러스터’에 거주 중이며 데자와나 콜라, 트레비 없이는 개발하지 않는다.

목차

1장. 서론
1.1 임베딩이란
1.2 임베딩의 역할
1.2.1 단어/문장 간 관련도 계산
1.2.2 의미/문법 정보 함축
1.2.3 전이 학습
1.3 임베딩 기법의 역사와 종류
1.3.1 통계 기반에서 뉴럴 네트워크 기반으로
1.3.2 단어 수준에서 문장 수준으로
1.3.3 룰 → 엔드투엔드 → 프리트레인/파인 튜닝
1.3.4 임베딩의 종류와 성능
1.4 개발 환경
1.4.1 환경 소개
1.4.2 AWS 구성
1.4.3 코드 실행
1.4.4 버그 리포트 및 Q&A
1.4.5 이 책이 도움받고 있는 오픈소스들
1.5 이 책이 다루는 데이터와 주요 용어
1.6 이 장의 요약
1.7 참고 문헌

2장. 벡터가 어떻게 의미를 가지게 되는가
2.1 자연어 계산과 이해
2.2 어떤 단어가 많이 쓰였는가
2.2.1 백오브워즈 가정
2.2.2 TF-IDF
2.2.3 Deep Averaging Network
2.3 단어가 어떤 순서로 쓰였는가
2.3.1 통계 기반 언어 모델
2.3.2 뉴럴 네트워크 기반 언어 모델
2.4 어떤 단어가 같이 쓰였는가
2.4.1 분포 가정
2.4.2 분포와 의미 (1): 형태소
2.4.3 분포와 의미 (2): 품사
2.4.4 점별 상호 정보량
2.4.5 Word2Vec
2.5 이 장의 요약
2.6 참고 문헌

3장. 한국어 전처리
3.1 데이터 확보
3.1.1 한국어 위키백과
3.1.2 KorQuAD
3.1.3 네이버 영화 리뷰 말뭉치
3.1.4 전처리 완료된 데이터 다운로드
3.2 지도 학습 기반 형태소 분석
3.2.1 KoNLPy 사용법
3.2.2 KoNLPy 내 분석기별 성능 차이 분석
3.2.3 Khaiii 사용법
3.2.4 은전한닢에 사용자 사전 추가하기
3.3 비지도 학습 기반 형태소 분석
3.3.1 soynlp 형태소 분석기
3.3.2 구글 센텐스피스
3.3.3 띄어쓰기 교정
3.3.4 형태소 분석 완료된 데이터 다운로드
3.4 이 장의 요약
3.5 참고 문헌

4장. 단어 수준 임베딩
4.1 NPLM
4.1.1 모델 기본 구조
4.1.2 NPLM의 학습
4.1.3 NPLM과 의미 정보
4.2 Word2Vec
4.2.1 모델 기본 구조
4.2.2 학습 데이터 구축
4.2.3 모델 학습
4.2.4 튜토리얼
4.3 FastText
4.3.1 모델 기본 구조
4.3.2 튜토리얼
4.3.3 한글 자소와 FastText
4.4 잠재 의미 분석
4.4.1 PPMI 행렬
4.4.2 행렬 분해로 이해하는 잠재 의미 분석
4.4.3 행렬 분해로 이해하는 Word2Vec
4.4.4 튜토리얼
4.5 GloVe
4.5.1 모델 기본 구조
4.5.2 튜토리얼
4.6 Swivel
4.6.1 모델 기본 구조
4.6.2 튜토리얼
4.7 어떤 단어 임베딩을 사용할 것인가
4.7.1 단어 임베딩 다운로드
4.7.2 단어 유사도 평가
4.7.3 단어 유추 평가
4.7.4 단어 임베딩 시각화
4.8 가중 임베딩
4.8.1 모델 개요
4.8.2 모델 구현
4.8.3 튜토리얼
4.9 이 장의 요약
4.10 참고 문헌

5장. 문장 수준 임베딩
5.1 잠재 의미 분석
5.2 Doc2Vec
5.2.1 모델 개요
5.2.2 튜토리얼
5.3 잠재 디리클레 할당
5.3.1 모델 개요
5.3.2 아키텍처
5.3.3 LDA와 깁스 샘플링
5.3.4 튜토리얼
5.4 ELMo
5.4.1 문자 단위 컨볼루션 레이어
5.4.2 양방향 LSTM, 스코어 레이어
5.4.3 ELMo 레이어
5.4.4 프리트레인 튜토리얼
5.5 트랜스포머 네트워크
5.5.1 Scaled Dot-Product Attention
5.5.2 멀티헤드 어텐션
5.5.3 Position-wise Feed-Forward Networks
5.5.4 트랜스포머의 학습 전략
5.6 BERT
5.6.1 BERT, ELMo, GPT
5.6.2 프리트레인 태스크와 학습 데이터 구축
5.6.3 BERT 모델의 구조
5.6.4 프리트레인 튜토리얼
5.7 이 장의 요약
5.8 참고 문헌

6장. 임베딩 파인 튜닝
6.1 프리트레인과 파인 튜닝
6.2 분류를 위한 파이프라인 만들기
6.3 단어 임베딩 활용
6.3.1 네트워크 개요
6.3.2 네트워크 구현
6.3.3 튜토리얼
6.4 ELMo 활용
6.4.1 네트워크 개요
6.4.2 네트워크 구현
6.4.3 튜토리얼
6.5 BERT 활용
6.5.1 네트워크 개요
6.5.2 네트워크 구현
6.5.3 튜토리얼
6.6 어떤 문장 임베딩을 사용할 것인가
6.7 이 장의 요약
6.8 참고 문헌

부록
부록 A. 선형대수학 기초
1.1 벡터, 행렬 연산
1.2 내적과 공분산
1.3 내적과 사영
1.4 내적과 선형변환
1.5 행렬 분해 기반 차원 축소 (1): 주성분 분석(PCA)
1.6 행렬 분해 기반 차원 축소 (2): 특이값 분해(SVD)

부록 B. 확률론 기초
2.1 확률변수와 확률 분포
2.2 베이지안 확률론

부록 C. 뉴럴 네트워크 기초
3.1 DAG로 이해하는 뉴럴 네트워크
3.2 뉴럴 네트워크는 확률모델이다
3.3 최대우도추정과 학습 손실
3.4 그래디언트 디센트
3.5 계산 노드별 역전파
3.6 CNN과 RNN

부록 D. 국어학 기초
4.1 통사 단위
4.2 문장 유형
4.3 품사
4.4 상과 시제
4.5 주제
4.6 높임
4.7 양태
4.8 의미역
4.9 피동
4.10 사동
4.11 부정

부록 E. 참고 문헌

책 속으로

출판사 서평

★ 이 책에서 다루는 내용 ★ ■ 자연어 처리의 첫 관문인 임베딩의 개념과 종류, 역사 소개 ■ 임베딩이 어떻게 자연어 의미를 함축하는지 이론적 배경 풀이 ■ 위키백과, KorQuAD 등 한국어 말뭉치 전처리 노하우 공유 ■ KoNLPy, so...

[출판사서평 더 보기]

★ 이 책에서 다루는 내용 ★
■ 자연어 처리의 첫 관문인 임베딩의 개념과 종류, 역사 소개
■ 임베딩이 어떻게 자연어 의미를 함축하는지 이론적 배경 풀이
■ 위키백과, KorQuAD 등 한국어 말뭉치 전처리 노하우 공유
■ KoNLPy, soynlp, 구글 센텐스피스(sentencepiece) 패키지 안내
■ Word2Vec, GloVe, FastText, Swivel 등 단어 수준 임베딩
■ LDA, Doc2Vec, ELMo, BERT 등 문장 수준 임베딩 설명
■ 개별 모델 학습과 동작 과정을 코드 레벨로 설명한 후 튜토리얼 진행
■ 문서 분류 태스크를 중심으로 임베딩 파인튜닝(fine-tuning) 실습

★ 이 책의 대상 독자 ★
■ 임베딩의 이론적 배경과 동작 원리에 관심이 많은 데이터 과학자
■ 자연어 분포와 의미 사이의 관계 해명을 중시하는 언어학 연구자
■ 품질 좋은 임베딩을 현업에 적용하려는 머신 러닝 엔지니어와 개발자

★ 이 책의 구성 ★
이 책은 다양한 임베딩 기법을 소개한다. 크게 단어 수준 임베딩과 문장 수준 임베딩을 다룬다. 각각 단어와 문장을 벡터로 변환하는 기법이다. 여기서 설명하는 단어 수준 임베딩으로는 Word2Vec, GloVe, FastText, Swivel 등이 있다. 문장 수준 임베딩은 ELMo, BERT 등이 있다.
이 책에서는 각 임베딩 기법의 이론적 배경을 살펴본 후 한국어 말뭉치로 실제 임베딩을 구축하는 과정을 설명한다. 각 기법을 설명할 때는 가급적 원 논문의 수식과 표기를 따른다. 코드 또한 논문 저자의 공식 리포지터리에서 가져와 소개할 예정이다.
말뭉치 전처리(preprocess), 임베딩 파인 튜닝(fine-tuning) 역시 이 책이 다루는 중요한 주제다. 전자는 임베딩 구축 전에, 후자는 임베딩 구축 후에 거쳐야 하는 과정이다. 전처리의 경우 KoNLPy, soynlp, 구글 센텐스피스(sentencepiece) 등 오픈소스 사용법을 설명한다. 긍정, 부정 등 문서의 극성(polarity)을 예측하는 문서 분류 과제를 예로 들어 임베딩을 파인 튜닝하는 방법을 실습한다.

각 장별 주요 내용은 다음과 같다.
1장, '서론'에서는 임베딩의 정의, 역사와 종류 등을 살핀다. 도커(docker) 등 개발 환경을 구성하는 과정 역시 설명한다.
2장, ‘벡터가 어떻게 의미를 가지게 되는가’에서는 자연어의 의미를 임베딩에 어떻게 함축시킬 수 있는지에 대한 내용을 소개한다. 각 임베딩 기법들은 크고 작은 차이가 있지만 말뭉치의 통계적 패턴(statistical pattern) 정보를 반영한다는 점에서 공통점을 지닌다는 사실을 짚는다.
3장, ‘한국어 전처리’에서는 임베딩 학습을 위한 한국어 데이터의 전처리 과정을 다룬다. 웹 문서나 json 파일 같은 형태의 데이터를 순수 텍스트 파일로 바꾸고 여기에 형태소 분석을 실시하는 방법을 설명한다. 띄어쓰기 교정 등도 소개한다.
4장, ‘단어 수준 임베딩’에서는 다양한 단어 수준 임베딩 모델을 설명한다. NPLM, Word2Vec, FastText 등은 예측 기반 모델, LSA, GloVe, Swivel 등은 행렬 분해(matrix factorization) 기반의 기법들이다. 가중 임베딩(weighted embedding)은 단어 임베딩을 문장 수준으로 확장하는 방법이다.
5장, ‘문장 수준 임베딩’에서는 문장 수준 임베딩을 다룬다. 행렬 분해(matrix factorization), 확률 모형, 뉴럴 네트워크 기반 모델 등 세 가지 종류를 소개한다. 잠재 의미 분석(LSA)은 행렬 분해, 잠재 디리클레 할당(LDA)은 확률 모델, Doc2Vec, ELMo, BERT 등은 뉴럴 네트워크가 중심인 방법들이다. 특히 BERT는 셀프 어텐션(self-attention) 기반의 트랜스포머 네트워크(transformer network)가 그 뼈대를 이루고 있다.
6장, ‘임베딩 파인 튜닝’에서는 단어, 문장 수준 임베딩을 파인 튜닝하는 방법을 다룬다. 네이버 영화 리뷰 말뭉치를 가지고 극성을 분류하는 과제를 수행한다.
‘부록’에서는 이 책을 이해하는 데 필요한 기초 지식을 간략하게 살펴본다. 선형대수학, 확률론, 뉴럴 네트워크, 국어학 등의 주요 개념을 설명한다.

[출판사서평 더 보기 닫기]

책 속 한 문장

회원리뷰

이 책과 함께 구매한 책들

이 책이 속한 분야 베스트

교환/반품안내

※ 상품 설명에 반품/교환 관련한 안내가 있는 경우 그 내용을 우선으로 합니다. (업체 사정에 따라 달라질 수 있습니다.)

교환/반품안내
반품/교환방법

[판매자 페이지>취소/반품관리>반품요청] 접수
또는 [1:1상담>반품/교환/환불], 고객센터 (1544-1900)

※ 중고도서의 경우 재고가 한정되어 있으므로 교환이 불가할 수 있으며, 해당 상품의 경우 상품에 대한 책임은 판매자에게 있으며 교환/반품 접수 전에 반드시 판매자와 사전 협의를 하여주시기 바랍니다.

반품/교환가능 기간

변심반품의 경우 수령 후 7일 이내, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

※ 중고도서의 경우 판매자와 사전의 협의하여주신 후 교환/반품 접수가 가능합니다.

반품/교환비용 변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
반품/교환 불가 사유

소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우(단지 확인을 위한 포장 훼손은 제외)

소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 예) 화장품, 식품, 가전제품 등

복제가 가능한 상품 등의 포장을 훼손한 경우 예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우 ((1)해외주문도서)

디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우

시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

1) 해외주문도서 : 이용자의 요청에 의한 개인주문상품이므로 단순 변심 및 착오로 인한 취소/교환/반품 시 해외주문 반품/취소 수수료 고객 부담 (해외주문 반품/취소 수수료는 판매정가의 20%를 적용

2) 중고도서 : 반품/교환접수없이 반송하거나 우편으로 접수되어 상품 확인이 어려운 경우

소비자 피해보상
환불지연에 따른 배상

- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

- 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

판매자
책책북북
판매등급
특급셀러
판매자구분
사업자
구매만족도
5점 만점에 5점
평균 출고일 안내
3일 이내
품절 통보율 안내
36%

이 책의 e| 오디오

바로가기

최근 본 상품